

The Interoperable Watersheds Network

Data Standards in Action

Outline

- What's the problem we're trying to solve?
- What would standardized sensor data enable?
- How IWN is a step towards solving these problems
 - Data Standards
 - Metadata
 - Architecture
- Project Successes/Lessons Learned
- Example: Demonstration Application CURRENTS
- Example: Mobile App
- Next Steps

The World is Built on Standards!

- When people agree to do things in a common way it opens up many opportunities for everybody to do things better.
 - Technology standards: like Bluetooth and Wifi
 - Data Standards: like financial exchanges
 - Government Standards: like the Exchange Network

The IRS has open standards for electronically filing your taxes, enabling a better user experience

Banking: OFX
Standards enable
you to access
your banking
information from
many 3rd-party
applications

Other Examples of Standards

Why Do We Need a Sensor Data Sharing Network?

- Water sensors are emerging as a key technology that can be used to improve monitoring efforts
- Multiple entities (EPA, other federal agencies, states, tribes, local groups) are investing in these new technologies
- This has already resulted in a proliferation of data that are not interoperable

time

How IWN is a Step Towards Solving These Problems

- The Interoperable Watersheds
 Network was a demonstration
 project that focused on evaluating
 approaches to improve sensor
 data sharing
- It was based on knowledge gained from a recommendations report that EPA developed in 2014
- The project focused on addressing three major areas:
 - Data Standards
 - Metadata
 - System Architecture

The Data Standards Problem

- We needed a common way to represent and communicate the data
- Standards for sensor data already exist, there was no need to create new standards
 - OGC Sensor Observation Service
 - OGC Water ML 2 and Sensor ML
- The Open Geospatial Consortium is an open-source, international standards setting body

The Metadata Problem

- Needed a standard way to answer the following questions:
 - What data are available and for what parameters?
 - What data can I use?
 - What's the quality of the data?
- IWN had to develop standard ways to do this (no existing standard existed)
- Further work needs to be done in this area

zap1

- nitrate* (11/10/2016 02/13/2017)
- oil* (11/10/2016 02/13/2017)
- total_suspended_solids* (11/10/2016 02/13/2017)
- e_coli* (11/10/2016 02/13/2017)

IWN Used a New Approach for Sharing Data

How do you solve the problem of multiple data providers with large amounts of data that have the potential to change every 3-15 minutes?

- Used a central catalog/index that references every data owner's assets with the corresponding metadata for each sensor
- Allowed for quick searching and discovery of available data
- This approach is similar to how Google allows you to search the internet
- Actual data comes from the partners systems in real-time

Underlying Catalog Services IWN Defined

- **GetOrganizations**: Returns who is providing data with their endpoints
- AvailableParameters: What parameters can be queried
- **GetSensors:** Gets the sensor information and provides different methods for querying sensors (i.e. by county, by HUC, by buffer, by a bounding box, upstream, and downstream)
- **GetSensorParameters**: Gets parameters for a sensor, including the period of record
- **GetOrganizationParameters**: Gets the parameters for an entire Organization

OGC Defined Services (SOS 2)

Each endpoint supports Sensor Observation Service in XML format (WaterML₂)

- **GetObservation**: Gets the most recent data or retrieves a collection of data
- **GetCapabilities**: Getting all the metadata from the endpoint
- DescribeSensor: Describes the sensor

IWN's Open Architecture Allows Other Possibilities

- IWN is built using an open architecture, meaning that all the functionality you see in the demonstration tool is also available as a corresponding Web Service or Application Program Interface (API)
- Enables other apps to be developed (like mobile apps)
- Also allows other third-party applications (like Excel) to be able to directly interact with the data without having to go to a website and 'download' the data

Real.m in Action

Discover Sensors

See Current Readings

Understand Trends

View Favorite Sites

	Saved Sensors	Edit
		Chlorophyll
•	Delaware R at Ben Franklin Bridge at Philadelphia 161.5 miles (USGS)	1.1 RFU
		Escherichia coli
9	Ferndale, WA 2338.3 miles (USEPA)	15.3 MPML
		Height, gage
•	RAPPAHANNOCK RIVER NEAR FREDERICKSBURG, 10.1 miles (USGS)	4.56 ft
•	BEAR RIVER NEAR CORINNE, UT 1840.9 miles (USGS)	12.87 ft
		Nitrate as N
•	ROCK CREEK AT JOYCE RD WASHINGTON, DC 42.1 miles (USGS)	0.74 mgs N

Next Steps

- Demonstration project ended in December 2016
 - A Lessons Learned Report has been completed
 - Available at: https://www.epa.gov/sites/production/files/2017-01/documents/iwn_lessonslearned_final_201612.pdf
 - Demonstration tool will continue to be available
 - A mobile app was developed that leverages the services/API developed as part of this project
- Demonstration proved successful
 - Services worked better than expected
 - Setting up a data appliance was simpler than anticipated
- Working with Region 10 to improve the visualization and to make it easier to register sensors and flow data

Improved Sensor Registration Process and QAQC implementation

Progress to date:

- Three Sensors are currently flowing data to Currents:
 - -Nooksack at Ferndale; Nooksack at Lynden; and Fishtrap and Lynden
- Data Appliance complete:
 - Data ingestion software complete and ready for deployment
 - Allows for optional QAQC implementation
 - Available on EPA GitHub: https://github.com/USEPA/Interoperable-Watersheds-Network-Data-Appliance
- QAQC implementation:
 - Tests for values outside of range and removes values outside of range while also keeping the raw data

Future Tasks:

• Deploy to OEI Amazon Cloud

Interoperable Watersheds Network

QUESTIONS?

Dwane Young
Young.dwane@epa.gov
202-566-1214

